Divisibility Tests

2 Look at the last digit of the original number. If that digit is even, then the original number is divisible by 2 .

3 Add up all the digits in the original number. If the sum is
Original number $=297$
$2+9+7=18$ and 18 is divisible by 3 .
*Since 4 goes into 20, 40, 60, and 80 evenly, determine how much greater than $20,40,60$, or 80 the original number is. If that new number is divisible by 4 , then the original number is divisible by 4 . **For numbers greater than two digits, if the last two digits are divisible by 4 , the original number is divisible by 4.
*Original number $=72$
72 is 12 more than 60 , and 12 is divisible by 4 .
**Original number $=1,984$ 84 is divisible by 4 , therefore 1,984 is divisible by 4 .

5 If the last digit of the original number is 0 or 5 , then the original number is divisible by 5 .

6 If the original number is divisible by both 2 and 3 , then it is also divisible by 6 .

7 There's not an easy shortcut for this one. J ust use short division to check divisibility.
*Look at the last three digits of the original number. If that number is divisible by 8 (use short division to check), then the original number is divisible by 8 . *|f the number in the hundreds place of the original number is even, you only have to look at the last two digits. If that number is divisible by 8 , then the original number is divisible by 8 .

9 Add up all the digits in the original number. If the sum is
*Original number $=123,336$ 336 is divisible by 8 , therfore 123,336 is divisible by 8 .
**Original number $=123,448$ 48 is divisible by 8 , therefore 123,448 is divisible by 8 .

Original number $=1,935$
$1+9+3+5=18$, and 18 is divisible by 9 , so 1,935 is divisible by 9 .

If the last digit of the original number is 0 , then the original number is divisible by 10 .

